-y s TV : - Y m .
A - ! N ;
UNIVERSITY OF WATERLOO ﬁ:‘ ey . 4 r el ~ . -
FACULTY OF’ENGINEERING‘ Y . # F &]
Department of Electrical &

omputer Engineering _ ﬁ#‘ﬁ% G ! s - ' P .
: ‘9‘&») ‘!;.. . # ECE 204*N11merlcal methods - .’

Ly - . b
: * : c, ‘
- 1 s . e I..:‘; .
* * :
R Y
=5 R
\ A < ¥ e L
&R R
.1- & - » 4 ‘ .
’ N . * '." E

"*, o T Authormgan 2 St e B
' J{ut_lalc.value E;oble!m sol.ver‘“ “

7 ‘ 4 » _“ " N ‘
V" g . - f*_ : ' . L & S '-‘“1
A ¥ » ‘,.‘ e k % 4 r -
A, ¥ Ay o L e
WA g . 3 A :1. " r ’

Douglas Wilhelm Harder, LEL, M Math-'\r

dwharder@uwaterloo .ca

| ;" ‘ ‘dwharder@ gmail.com

.- . " =
'ﬁ'l \ﬁ\-?» _ vy :’! =

3 y = - | (o] 2 % - - A
4 S g ot w1 oty '-“."u’: > 3! < %
y ' et #

" ‘\';»;%F’" iy ‘:? § Wy =y el g ‘,..\,;-‘.'-' :‘ 5 2 5' : r"»f"-&] "i"'-‘
O, 4 R T oy Authoering an‘initial-val

Introduction

In this topic, we will
— Look at the weaknesses of our implementations
— Consider how to reduce the work for the user

— Discuss how to use classes to provide better user
interfaces

‘ X ot ¥ Ve 2 ¥
¥ ‘ V'. - vv ! o 4 g W ¥ 7
‘ s._;_.(—-< - S Pl ST O

o i 4 % o y S
- o : B GO M, P S RS ol T T N
g RO — Authoring an'initidl-value*prob

Review of our IVP solvers

The solvers we have implemented so far are classic procedural
functions

— They all return multiple arrays
— The Matlab 1vP solver routine ode45(...) is similar

— The Maple dsolve(...) routine,
however, returns a callable function

All the user wants, however, is to evaluate the solution at various
points

— Passing back arrays requires the user to perform the
interpolation or spline calculations

R ;’ Tl H-,_ ¥ ¢ ‘.:,‘“} & s
URBE * Vgl e

: 2N 5 9 %o] 5
A N g Mg Tl P
TR o Authoring an'initial-valugproble

A better approach

Solution:

— Create a class, where each instance is a solver for a particular
initial-value problem

* The description of the IVP is passed to the constructor

— The class has one public member operator:
double operator()(double t)

vec<N> operator()(double t)

e

g e e 2 bR S SRR , W RO NEEE - N Rl L
WL s o AR Authoring an'initial-valug®

A better approach

All other data is kept internal inside the instance of the class

— This includes the t-values and the approximations of the values and
derivatives

Question: How do we know how far to approximate to?
— We don't, and we don’t care, either
— The user will create an instance:
int main() {

ivp y{ f, 0.0, 1.0,
std: :make _pair(©0.0001, 0.01), le-4 };

for (unsigned int k{@}; k <= 1000; ++k) {
std::cout << y(0.01*%k) << std::endl;
}

return 0;

o 4 55 b e “
: ‘3“:_(_'- WL "’, f 9 T ,)
Sy - i v v Y 3 I

i 3 A LA e “ e .
| vy 3 N Ve l_,y' 4 5. o 4 e 3 | y‘ X ?:\.-q\ - =
v g Authoring an initial-valué*prob

A better approach

Do we make the calculation each time?
— No

Strategy:
— Store the t-values and approximations in a std: : vector
member variable

— If the user asks for an approximation at a specific t,
check if lies between two approximations
* Ifno, keep approximating from the last approximated t-value
until you pass the requested time ¢t

— Any newly calculated approximations are appended to the
std: :vector member variable

= oo o 4 55 -'1 . Vv : o &
PN e Rl 1 B %,
e > ’ SbY | P 7 y L

> 2N y 3 . L e 5 1
" o - & . = . _Y‘. g =Y
g RO P Authoring an‘initial-valuéprob

[ssue with naming...

The standard template library class equivalent to an array on
steroids is unfortunately called std: :vector

— This was an acknowledged mistake on the part of the designer
of the STL, Alex Stepanov

Issues:

— You cannot perform vector addition, nor can you perform scalar
multiplication

— std: :vector are variable in size: you can resize a std: : vector

Just remember:
The std: :vector class has absolutely nothing to do with
vectors from linear algebra

o “ ‘.Y ’;’,_ o " ')ﬂ'"—;‘\% - S A }s. > 1.4.) ' \ . ¥ "A‘ = Y “:,. - \ - @ ’_ : W
x‘” o LS N s R O NS R e L £ :
R £ - T 8. ™7 Authering'an initial-v ob

A better approach

Internally, we proceed as follows:

Yo

N

2., REE N e B g s e & AR SO T ks J
FCT A 2 > " ey :Q"r e aRE , &4 s . o 1570 R
o 4 ? :? Ty Authoering an‘initial-val roble

A better approach

* Thus, the user need know nothing about how these
computations are being made

— The user would look at the description and see if the package 1s
appropriate in the state provided

o .‘. "..'}‘ ¥ 7:_,‘ & P : ~:§,',7,,_;‘ e : g ._)i : - '_ \‘ 4 = ‘n:;- A 7 A
\. .e.< b 3 W """("r‘”_ - » ~,.‘.' 4, 4 et g -.J,' Y‘: '31‘,“\)) ,'
i L Y 7« T Authering an‘initial-valugfproble

A better approach

Consequently, the user can simply do:
int main() {

ivp y{ f, 0.0, 1.0,
std::make _pair(0.0001, 0.01), le-4 };

for (unsigned int k{@}; k <= 1000; ++k) {
std::cout << y(0.01*k) << std::endl;

return 9;

— Essentially all these values will be spline results
* The user doesn’t care

10

double ivp:

if (.
//
//
//
} else
//
//
//
//
//

//
//

//

. N el % = - W s
w* v~p:x S-S . ¥ < 4
< I

okl . T8N 4 iy W Y ‘:‘fz‘:’h‘d\” :
i **% 7 Authoring anti’fn’tlé’lfval_ S prob
Pseudo-code

:operator()(double t) {

) {

If we have already approximated the solution up to or
beyond t, find the approximations on either side of t
in the std::vector and return the cubic spline at t

{

Create a queue to store new approximations

Use the Dormand-Prince method to continue
approximating new t values and appending these

new approximations onto the queue, until

we have approximated a point at or beyond t

Expand the std::vector, and move the data from the
queue to the std::vector

Use a cubic spline at t

11

A ;-‘ s X ' ,\"' ; " “ : ds ;‘. B, E i \ *_;
P gj ¥ £ o Authorlng an 1n1t1é’1‘ val robles

B4 . bt v":{“‘u 2 ! &3 : .%o » > o - o
4 - 3 - ” >

Summary

Following this topic, you now
— Understand how to make interfaces more user friendly
— Are aware of the ivp class and how it would be implemented

12

,.'“' - M 4 “. > " 0 e s 5, _‘ VPSS -)l : 7 ',; \‘ aer 4 {9 AN “:ﬁ \ » A)
¥ == | + s‘g;f“ v g ! 73 o R (f?,:.w 5 A , T % . Syl a0 Jos
e 4 TR (g 4 " Authoering an‘initial-val robler

References

1] https://en.wikipedia.org/wiki/Dormand-Prince_method
' https://en.wikipedia.org/wiki/Adaptive_algorithm

4] https://en.wikipedia.org/wiki/Adaptive_step_size

13

None so far.

b R T G AR WA e A avh
i 33?"}9 5"’ 3 Aut'barlng“an}w "E@’V ug'prob "

Acknowledgments

14

t

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

PG I
B e N e

:" ‘ hj} ' \-.\\/I-A‘.&;'\’ e ."' (ot Ay
YEN L \ 7L
A Y .' A\ ’>:? f AV ‘ [\ e
o\l /&> 5, ol Y
:‘\ ¥ Co2)

| Bt WL 4 & & " PRl 2

W $ Authormg an 1n1t1é’} val%mbleﬂ!,sol\(e; /ﬁ*".,

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

16

	Authoring an�initial-value problem solver
	Introduction
	Review of our ivp solvers
	A better approach
	A better approach
	A better approach
	Issue with naming…
	A better approach
	A better approach
	A better approach
	Pseudo-code
	Summary
	References
	Acknowledgments
	Colophon
	Disclaimer

